

CDF Plan and Budget for Computing in Run 2

Robert M. Harris

Directors Review of Run 2 Computing

June 4, 2002

Outline

- Overview
 - Summary of computing and requirements models.
 - Required computing and equipment spending FY02-FY05
- Details of spending by sub-system
 - CAF batch CPU
 - CAF static disk
 - Cache disk
 - Tape drives & robot
 - Networking
 - Farms
 - Interactive CPU
 - Databases
 - Tapes and Operating
- Conclusions

Summary of Computing and Dataflow

- Raw Data
 - Written to write cache before being archived in tape robot.
 - Reconstructed by production farms.
- Reconstructed Data
 - Written by farms to tape robot.
 - Read by batch CPU via read cache.
 - Stripped and stored on static disk.
- Batch CPU (CAF).
 - Produces secondary datasets and root ntuples for static disk.
 - Analyzes secondary datasets and ntuples.
- Interactive CPU and desktops
 - Debug, link and send jobs to CAF.
 - Access data from cache and CAF.
 - Write data to robot via cache.
- Database and replicas provide
 - Constants for farms, CAF, users.

Summary of Requirements Model

- Increases in luminosity will drive computing requirements.
 - Both integrated luminosity and DAQ peak logging rate drive requirements.
 - Model includes offsets to reflect non-scaling needs (commissioning, R&D).
- The CPU and disk needs scale primarily with integrated luminosity.
 - Batch CPU requirements from CAF Review Committee: CDF 5787.
 - 1.1 THz / fb⁻¹ allows 200 simultaneous users to process a 5 nb sample in one day.
 - Static disk requirements from physics group requests.
 - 125 TB / fb⁻¹ from dataset, MC & other requests or all reco data on disk + 25% extra.
 - Read cache requirements from CDF 5787 assuming a heavy caching model.
 - Large cache is fallback in case static disk requirements are larger than anticipated.
- The tape archive and farms CPU needs scale primarily with DAQ logging.
 - 20 MB/s (80 Hz) upgraded to 60 MB/s (240 Hz) in FY05, and a few details:
 - Uptime of 15%, 30%, 30%, 15% in FY02, 03, 04, 05 (shutdown ½ year).
 - Reprocessings (1→ 0.3) and reconstructed event size (170 → 100 KB).
 - Secondary data, ntuples, and MC data size estimates (~ 1/4 of all archive).
 - Processing times for MC and raw data, with room for multiple interactions.
 - Takes into account peak vs. DC needs of the farms.

Required Computing FY02 – FY05

Equipment Spending Plan

FY	CAF batch	Inter- active	Farm CPU	DB	Robot &	CAF Disk	Cache Disk	Net- Work	Legacy System	Total
	CPU	CPU			Drives					
	(\$M)	(\$M)	(\$M)	(\$M)	(\$M)	(\$M)	(\$M)	(\$M)	(\$M)	(\$M)
2002	0.59	0.07	0.22	0.02	0.77	0.47	0.16	0.25	0.69	3.24*
Spent	(0.19)	(0.07)	(0.11)	(0.00)	(0.25)	(0.12)	(0.04)	(0.12)	(0.69)	(1.59)
2003	0.48	0.15	0.22	0.15	0.35	0.35	0.11	0.25	-	2.06
2004	0.48	0.20	0.13	0.10	0.35	0.35	0.11	0.25	-	1.97
2005	0.60	0.20	0.19	0.10	0.35	0.35	0.13	0.25	-	2.17

- FY02 spending covered by FY02 budget of \$2M and \$1.2 1.4M from misc sources
 - → FY01 carryovers of \$0.4M, hardware returns of \$0.36M, non-Fermilab contributions of \$0.27M, anticipated non-Fermilab contributions of between \$0.15M and \$0.36M.
- FY03 FY05 spending achieved by Fermilab equipment budget of \$2M + misc.
- Not included above is \$0.5 M per year operating expenses for tapes & misc.

CAF Batch CPU Spending

Stage	FY	Needs (THz)	Duals Bought	Duals Total	Speed (GHz)	CPU (THz)	Total (THz)	Cost (\$M)
1	2002	.1	69	69	1.3	0.18	0.18	0.19
2	2002	.5	160	229	1.8	0.58	0.76	0.40
3	2003	1.5	192	421	2.5	0.96	1.72	0.48
4	2004	2.9	192	613	3.5	1.34	3.06	0.48
5	2005	4.7	+240-229	624	5.0	2.40	4.7	0.60

- Needs include all batch analysis needs of users and physics groups.
- Each year roughly 200 duals are purchased.
- Dual speed increases with Moore's Law (doubling every 18 months).
- Cost per dual is constant at \$2.5K.
- Every 3 years duals are replaced: FY05 duals replace FY02.

CAF Disk Spending

Stage	FY	Needs (TB)	Servers Bought	Servers Total	Server (TB)	Disk (TB)	Total (TB)	Cost (\$M)
1	02	~30	11	11	1.9	21	21	0.12
2	02	82	32	43	2.2	72	93	0.35
3	03	180	32	75	3.5	112	205	0.35
4	04	340	32	107	5.5	176	381	0.35
5	05	540	+32-43	96	8.7	278	558	0.35

- Needs are disk requests from the physics groups.
 - Enough to hold all reconstructed data on disk plus 25% contingency (100KB/ev)
- Each year 32 servers are bought (except 43 in FY02)
- The server capacity grows with Moore's law (doubling every 18 months).
- The server price remains roughly \$10K
- Every 3 years servers removed: servers bough in FY02 removed in FY05.

Cache Disk

	STG	FY	Needs	File	FS Size	Added	Total	Cost
			(TB)	Servers	(TB)	(TB)	(TB)	(\$M)
뽀	1	02	12	4	1.9	8	8	0.04
READ CACHE	2	02	26	8	2.2	18	26	0.08
D C	3	03	54	8	3.5	28	54	0.08
REA	4	04	100	8	5.5	44	98	0.08
Щ	5	05	160	+10 -12	8.7	60	159	0.10
甲								
CACHE	2	02	9	4	2.2	9	9	0.04
C/	3	03	17	3	3.5	11	20	0.03
WRITE	4	04	30	3	5.5	16	36	0.03
W	5	05	46	+3 -4	8.7	17	53	0.03

- Needs include caching of all data from and to tape robot.
- The server capacity grows with Moore's law. cost remains roughly \$10K.
- Every 3 years servers are removed: servers bought in FY02 removed in FY05.

Tape Drives & Robot Spending

Stg	FY	Data	Drives	Tape	Rate	Drives in	Total	Total	Cost
		(PB)	Bought	(GB)	(MB/s)	each robot	(PB)	(MB/s)	(\$M)
1	02	0.1	10A	60	10	10A	0.33	100	0.25
2	02	0.3	10A	60	10	10A 10A	0.66	200	0.52
3	03	0.7	10B	200	30	20A 10B	1.43	500	0.35
4	04	1.1	10B –20A	200	30	10B 10B	2.2	600	0.35
5	05	1.7	10C	400	60	20B 10C	3.3	1200	0.35

- Driven by storage needs. I/O needs, not shown, exceeded by factor of 2-3.
 - ► FY2002 we purchase 2nd STK robot. Each year add 10 drives and R&D of \$50K.
 - Copy data from older to newer drives for larger archive capacity (conserve footprint).
- The drive performance follows the STK long range roadmap
 - The B drive (T9940B) triples the A drive in performance as early as FY02.
 - The C drive is assumed to only have twice B's performance.
 - Decommission drives when they become 2 generations old.

Network Spending

Stage	FY	FE Ports	FS	GigE Ports	GigE Ports	Switch Buy	Cost (\$M)	Misc (\$M)	Total (\$M)
		Buy		/FS	Total				
1	02	96	16	1	16	up	0.04	0.07	0.11
2	02	192	44	1	60	1	0.14	0.00	0.14
3	03	192	43	1	103	1	0.10	0.15	0.25
4	04	192	43	2	189	1	0.11	0.14	0.25
5	05	240	+45-60	2	219	1	0.07	0.18	0.25

- Roughly half the purchases will be for the CAF, driven by connect needs.
- 1 FE port per worker node and 1-2 GigE port per fileserver
- Cost \$0.25K / FE, \$1K / GigE and Moore's law decrease.
- Large fraction of miscellaneous cost will be for trailers and B0 to FCC link.

Farms Spending

FY	Needs (GHz)	Duals	Total Duals	Type (GHz)	Total (GHz)	Cost (\$M)
02 (may)		32	169	1.3	294	0.12
02 (end)	370	32	201	1.8	410	0.1
03	700	+68 - 50	219	2.5	700	0.22
04	760	+32 – 23	228	3.5	888	0.13
05	1300	+54 – 64	218	5.0	1300	0.19

- Needs include raw data processing, reprocessings (1→ 0.3) and MC.
 - → Takes into account peak vs. DC needs and slowdown due to multiple interactions.
- Each year roughly 50 duals purchased.
- Dual speed increases with Moore's law.
- Cost is \$2.5K/node + networking and misc.
- Every 4 years duals are removed (farms started in 1999).

Interactive CPU

FY	Legacy Processors	Interactive CPU (\$M)	Local Disk (\$M)	Total (\$M)
02	128	0.07	0.00	0.07
03	64	0.10	0.05	0.15
04	32	0.10	0.10	0.20
05	0	0.10	0.10	0.20

- The plans for interactive CPU are still being developed.
 - Perhaps an interactive login pool of duals with a method of sharing disk.
 - → Perhaps fewer numbers of n-ways (8-ways or more).
- Plan to decommission fcdfsgi2 over roughly 2 years
- Will require additional Linux interactive CPU as fcdfsgi2 decreases.
- The budget for CPU is roughly constant and smaller than batch CPU.
- Costs of local disk increase that users share interactively increase.

Database

FY	DB CPU (n-ways)	DB Disk (TB)	Cost (\$M)
02	Reuse	2	0.02
03	3	6	0.15
04	2	6	0.10
05	2	9	0.10

- In FY02 re-using a Linux 4-way as our first Linux DB replica.
 - → To serve the needs of the CAF, trailers and universities.
 - Suns remain to serve the production farms.
- Plan to add three 4-ways with 2 TB of disk in FY03
 - DB replica dedicated to the trailers and universities.
 - Replacing the aging Sun DB machines
- More replicas anticipated for FY04 and FY05

Tapes and Operating

FY	Archive	AIT-2	T9940A	T9940B	T9940C	Tape	Misc	Cost
	(PB)	(PB)	(PB)	(PB)	(PB)	(\$M)	(\$M)	(\$M)
02	0.3	0.1	0.3	-	-	0.52	0.15	0.67
03	0.7	-	0.2	0.7	-	0.54	0.15	0.69
04	1.1	-	-	0.4	-	0.16	0.15	0.31
05	1.7	-	-	0.3	1.7	0.46	0.15	0.61

- Cost per GB for tape media is (AIT-2, A, B, C) = \$(1.3, 1.3, 0.4, 0.2)
- Cost includes old datasets copied to higher media densities.
 - ▶ In FY02 we copied 0.1 PB from AIT-2 to T9940A. 0.1 PB on both media.
 - → In FY03 we plan to copy 0.5 PB from T9940A to cheaper B densities.
 - ▶ In FY05 we copy 1.4 PB from T9940B to cheaper C densities.
 - Old datasets can be stored for data security or reused to save media costs (A→B).
- Another \$0.15 M per year for racks, cards, installs, FNAL desktops, etc.
 - Total operating averages to \$ 0.54 M / year for FY03 FY05
 - With large year to year fluctuations depending on tape copying activity.

Conclusions

- Increases in luminosity will drive computing requirements.
 - The CPU and disk needs scale with integrated luminosity.
 - The tape archive and farms needs scale with DAQ logging capability.
- Computing procurements are planned to meet the needs.
 - → Hundreds of PCs analyzing ~200 TB of data on network attached IDE disk.
 - → Fast network attached tape drives writing hundreds of GBs to each tape.
- About \$2 M equipment and \$0.5 M operating needed per FY.
 - This is the anticipated budget coming from Fermilab.
- Budget not dominated by any single system.
 - ~ \$0.8M / FY tapes, tape drives and tape robots.
 - ~ \$0.7M / FY CPU of all kinds.
 - ~ \$0.6M / FY disk of all kinds.
 - ~ \$0.25M / FY networking.
 - ~ \$0.15M/ FY miscellaneous operating.